5 modeldf()
The function modeldf() has similar features to tidying model objects with additions. The margin of error (moe) and confidence interval columns (ci\_\) would inform those in the health sciences the impact range of their variables of interest–other discplines may benefit as well from these estimates. The variance inflation factors (VIF)–which are estimated with vif() from car–measure the extent of collinearity in linear models.
5.1 Case 1: OLS
model.lm <- lm(data = mtcars,
formula = mpg ~ disp + hp + wt + gear + am)
modeldf(model = model.lm, conf = 0.90) ## term coef se moe ci_lower ci_upper
## 1 (Intercept) 32.108024910 4.84359733 8.26132640 23.84669851 40.36935131
## 2 am 1.605381694 1.78234460 3.03999888 -1.43461719 4.64538058
## 3 disp 0.005352328 0.01178752 0.02010500 -0.01475267 0.02545733
## 4 gear 0.651585626 1.21191542 2.06706466 -1.41547904 2.71865029
## 5 hp -0.042892355 0.01424230 0.02429192 -0.06718428 -0.01860043
## 6 wt -3.113042246 1.17912588 2.01113824 -5.12418048 -1.10190401
## t p vif
## 1 6.6289625 4.959127e-07 NA
## 2 0.9007134 3.760085e-01 3.583076
## 3 0.4540675 6.535481e-01 9.668205
## 4 0.5376494 5.953915e-01 3.621713
## 5 -3.0116168 5.721679e-03 4.319422
## 6 -2.6401271 1.382770e-02 6.029643
5.2 Case 2: GLM (logit)
model.glm <- glm(data = mtcars, formula = am ~ mpg + disp + hp,
family = binomial(link = 'logit'))
modeldf(model = model.glm, conf = 0.85) ## term coef se moe ci_lower ci_upper
## 1 (Intercept) -33.8128314 24.17533401 24.5646824 -84.33645885 -9.24814900
## 2 disp -0.0654460 0.04304626 0.0434281 -0.15279531 -0.02201789
## 3 hp 0.1493636 0.07871156 0.1696229 0.06680399 0.31898646
## 4 mpg 1.2849763 0.89894752 1.8600069 0.37394599 3.14498315
## z p vif
## 1 -1.398650 0.16191796 NA
## 2 -1.520364 0.12841942 15.021316
## 3 1.897607 0.05774791 23.014959
## 4 1.429423 0.15288269 8.822745
5.3 Case 3: NLS
## parameter coef se moe ci_lower ci_upper
## 1 theta0 -121.608226 13.2364581 17.24120193 -138.579289 -104.367024
## 2 theta1 1.170315 0.0182639 0.02228835 1.145183 1.192604
## t p
## 1 -9.187369 2.167395e-15
## 2 64.078073 3.014033e-91